Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.

نویسندگان

  • Annemieke Kolkman
  • Maurien M A Olsthoorn
  • Carola E M Heeremans
  • Albert J R Heck
  • Monique Slijper
چکیده

The use of chemostat culturing enables investigation of steady-state physiological characteristics and adaptations to nutrient-limited growth, while all other relevant growth conditions are kept constant. We examined and compared the proteomic response of wild-type Saccharomyces cerevisiae CEN.PK113-7D to growth in aerobic chemostat cultures limited for carbon sources being either glucose or ethanol. To obtain a global overview of changes in the proteome, we performed triplicate analyses using two-dimensional gel electrophoresis and identified proteins of interest using MS. Relative quantities of about 400 proteins were obtained and analyzed statistically to determine which protein steady-state expression levels changed significantly under glucose- or ethanol-limited conditions. Interestingly, only enzymes involved in central carbon metabolism showed a significant change in steady-state expression, whereas expression was only detected in one of both carbon source-limiting conditions for 15 of these enzymes. Side effects that were previously reported for batch cultivation conditions, such as responses to continuous variation of specific growth rate, to carbon-catabolite repression, and to accumulation of toxic substrates, were not observed. Moreover, by comparing our proteome data with corresponding mRNA data, we were able to unravel which processes in the central carbon metabolism were regulated at the level of the proteome, and which processes at the level of transcriptome. Importantly, we show here that the combined approach of chemostat cultivation and comprehensive proteome analysis allowed us to study the primary effect of single limiting conditions on the yeast proteome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose.

In Saccharomyces cerevisiae, the structural genes PDC1, PDC5 and PDC6 each encode an active pyruvate decarboxylase. Replacement mutations in these genes were introduced in a homothallic wild-type strain, using the dominant marker genes APT1 and Tn5ble. A pyruvate-decarboxylase-negative (Pdc-) mutant lacking all three PDC genes exhibited a three-fold lower growth rate in complex medium with gluc...

متن کامل

Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.

In contrast to batch cultivation, chemostat cultivation allows the identification of carbon source responses without interference by carbon-catabolite repression, accumulation of toxic products, and differences in specific growth rate. This study focuses on the yeast Saccharomyces cerevisiae, grown in aerobic, carbon-limited chemostat cultures. Genome-wide transcript levels and in vivo fluxes w...

متن کامل

The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae

Background l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae s...

متن کامل

Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.

Prolonged cultivation of Saccharomyces cerevisiae in aerobic, glucose-limited chemostat cultures (dilution rate, 0.10 h(-1)) resulted in a progressive decrease of the residual glucose concentration (from 20 to 8 mg l(-1) after 200 generations). This increase in the affinity for glucose was accompanied by a fivefold decrease of fermentative capacity, and changes in cellular morphology. These phe...

متن کامل

Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture

Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2005